
An Asymptotic PTAS for a Special Case of Minimum Makespan
Job Scheduling

Christopher Scarvelis and Prof. Adrian Vetta

August 16, 2019

1 Preliminaries
Minimum makespan job scheduling is a fundamental problem in theoretical computer science. Suppose that
we have n jobs j = 1, ..., n and m machines i = 1, ...,m. Each job must be assigned to exactly one machine;
we call such an assignment of jobs to machines a schedule. If some job j is scheduled on machine i, the
machine incurs a non-negative cost cij (or in an alternative interpretation, takes time cij to process the job).

Let A1, ..., Am be a partition of the job set. We interpret Ai as the subset of jobs scheduled on machine
i. We define the length of machine i’s schedule to be∑

j∈Ai

cij

and correspondingly define the makespan of the schedule defined by the partition A1, ..., Am to be the
following quantity:

max
i∈[m]

∑
j∈Ai

cij

where [m] denotes the set {1, ...,m}. As the name of the problem suggests, the objective of minimum
makespan job scheduling is to find a schedule that solves the following combinatorial optimization problem:

min
A1,...,Am

max
i∈[m]

∑
j∈Ai

cij

Aside from the obvious interpretation of this problem as one of finding an optimal schedule for a set of
jobs, minimizing makespan can be interpeted as the optimization of a fairness criterion in the sense that a
minimum makespan schedule attempts to make each machine’s schedule length as similar as possible.

This problem in its full generality is known to be APX-hard. In particular, it can be shown by reduction
from three-dimensional matching that minimum makespan scheduling on unrelated machines (i.e. with
arbitrary non-negative costs cij) admits no α-approximation algorithm for α < 3

2 unless P=NP.
In 1990, Lenstra, Shmoys and Tardos developed a 2-approximation algorithm based on rounding a solution

to the LP relaxation of the integer program formulation of the scheduling problem. This result remains
essentially the best known performance guarantee for an algorithm which solves this problem. (Shchepin and
Vakhania have slightly improved this result to obtain a (2− 1

m)-approximation algorithm that is structurally
similar to the LST algorithm.)

However, there are special cases of the job scheduling problem for which substantially stronger results
are known. In particular, there exists a polynomial-time approximation scheme (PTAS) for the special case
of identical machines, where the cost of each job is the same for all machines, so

ci1j = ci2j ∀i1, i2 ∈ [m]

There also exists a PTAS for the case of uniform machines, where the cost vectors of any pair of machines
i1, i2 are scalar multiples of each other.

Now suppose that we fix three positive parameters B, ε, δ and consider an instance I of minimum
makespan job scheduling satisfying the following two assumptions:

1

1. ci1 ≥ · · · ≥ cin for all machines i ∈ [m]. (Order property)

2.
∑n
j=1 cij = B for all machines i ∈ [m]. (Sum property)

These two properties are motivated by applications to fair division problems. In particular, the sum property
may be motivated by considering an instance of the problem where the machines represent agents who have
private information regarding their costs. A planner must solicit costs from the agents, and the agents expect
that the planner is unlikely to assign a given job to an agent that reports a high cost for that job. Clearly,
each agent is incentivized to “cheat” by reporting arbitrarily high costs for all jobs. The sum property
represents a natural way to exclude such a strategy - we can give each agent B points to allocate among the
n jobs.

I claim that there exists an asymptotic PTAS for this problem. That is, I claim that the following theorem
is true.

Theorem 1: There exists an algorithm A that runs in time polynomial in n and m and returns a schedule
whose makespan OPTA satisfies:

OPTA ≤ (1 + δ)OPT + ε

2 The Algorithm
The basic approach is to divide the job set into “big” jobs and “small” jobs and then operate in two distinct
phases. In the first phase, we enumerate all possible assignments of big jobs to machines - one of these
corresponds to the assignment of big jobs in the optimal schedule for all jobs. In the second phase, we assign
the small jobs using the LP-based method of Lenstra, Shmoys and Tardos. The main issue is that it is
not clear a priori that the enumeration of schedules for big jobs can be done in polynomial time. It turns
out that the order and sum properties together ensure that the number of big jobs is bounded above by a
constant, which implies that there is at most a polynomial number of schedules for big jobs. The details are
as follows.

We call a job j big if there exists some machine i ∈ [m] such that cij > ε. Otherwise, a job is said to be
small. In particular, a small job j satisfies cij ≤ ε for all machines i. We first prove a Markov-type inequality
that supplies a constant upper bound on the number of jobs j satisfying cij > ε for each machine i.

Lemma 1: For any machine i ∈ [m], we have that |j ∈ [n] : cij > ε| ≤ B
ε .

Proof: We may decompose the sum of the job costs on machine i as follows:
n∑
j=1

cij =
∑

j:cij≤ε
cij +

∑
j:cij>ε

cij = B

As costs are non-negative, it follows that ∑
j:cij≤ε

cij ≥ 0

and hence ∑
j:cij>ε

cij = B −
∑

j:cij≤ε
cij ≤ B

But by construction, cij > ε for all terms in the sum on the left-hand side above, so we further have∑
j:cij>ε

cij >
∑

j:cij>ε
ε = |j ∈ [n] : cij > ε| · ε

We conclude that
|j ∈ [n] : cij > ε| · ε ≤ B

which directly implies that
|j ∈ [n] : cij > ε| ≤ B

ε

2

since ε > 0. �
Hence the number of jobs that are big on some given machine i is bounded above by a constant. However,

this does not exclude the possibility that a different subset of at most B
ε jobs is big on each machine - in

fact, it may still be that all jobs are big on some machine. Fortunately, the order property ensures that this
cannot be the case. In particular, we can strengthen Lemma 1 to obtain a bound on the number of jobs that
are big on some machine. (This was our initial definition of a big job.)

Lemma 2: The following bound holds: |j ∈ [n] : ∃i ∈ [m] s.t. cij > ε| ≤ B
ε .

Proof: Let machine i∗ have the most jobs with cost > ε and suppose that the number of such jobs on
this machine is j∗. By Lemma 1, we have that j∗ = |j ∈ [n] : ci∗j > ε| ≤ B

ε , so by the order property,
ci∗1 ≥ · · · ≥ ci∗j∗ > ε and ci∗j ≤ ε for all j > j∗. Now consider some other machine î and suppose that
there are ĵ ≤ j∗ jobs with cost > ε on î. Again by the order property, cî1 ≥ · · · ≥ cîĵ > ε and cîj ≤ ε for
all j > ĵ. As ĵ ≤ j∗ (since j∗ is the maximum number of jobs with cost > ε for any machine), it follows
that cîj ≤ ε for all j > j∗ ≥ ĵ. This implies that for any machine i, cij ≤ ε for all j > j∗. In particular,
{j ∈ [n] : ∃i ∈ [m] s.t. cij > ε} = {1, ..., j∗} and so

|j ∈ [n] : ∃i ∈ [m] s.t. cij > ε| = j∗ ≤ B

ε

which completes the proof of the lemma. �
Lemma 2 holds essentially because the ordering property implies that the set of big jobs on any machine

i is a subset of the set of big jobs on machine i∗, where i∗ is the machine with the most jobs with cost > ε.
We have shown that there are at most B

ε big jobs in any instance of the job scheduling problem satisfying
the order and sum properties. As each of these jobs must be assigned to one of m machines, there are O(mB

ε)
(i.e. polynomially many) possible assignments of big jobs to machines. These can clearly be enumerated in
polynomial time, and one of them corresponds to the the assignment of big jobs in the optimal schedule for
all jobs.

For each assignment of big jobs, we use the method of Lenstra, Shmoys and Tardos to assign the remaining
jobs. In particular, let S = {j : cij ≤ ε for all i ∈ [m]}. Then S = [n] \ {j ∈ [n] : ∃i ∈ [m] s.t. cij > ε}.
For each machine i, let di be the total cost of the big jobs scheduled on i in the assignment currently being
considered. Fix some target T ≥ 0 and consider the following integer program, which we will denote IP(T):

m∑
i=1

xij = 1 ∀j ∈ S

∑
j∈S

xijcij ≤ T − di ∀i ∈ [m]

xij ∈ {0, 1} ∀i ∈ [m], j ∈ S

It is easily seen that feasible solutions to IP(T) are in bijection with schedules for the small jobs such
that the combined schedule for big and small jobs has makespan at most T . In particular, if T ≥ OPT and
we have chosen the correct assignment of big jobs, then IP(T) must be feasible since the assignment of small
jobs in the optimal schedule solves IP(T).

Now consider the following LP relaxation of IP(T), which we will denote LP(T):

m∑
i=1

xij = 1 ∀j ∈ S

∑
j∈S

xijcij ≤ T − di ∀i ∈ [m]

xij ≥ 0 ∀i ∈ [m], j ∈ S

3

This LP is also feasible for T ≥ OPT since we have seen that IP(T) is feasible for such values of T .
Now note that B

n is a valid lower bound for OPT since we must have ci1 ≥ B
n for all machines i (since

otherwise we’d have cij < B
n for all jobs j and the sum property couldn’t possibly hold). Furthermore, B

is clearly a valid upper bound for OPT. Hence we may carry out a binary search on the interval [Bn , B]
to approximately find the smallest value of T such that LP(T) is feasible. In particular, initially set T =
1
2 (Bn + B) and determine if LP(T) is feasible. If yes, then shrink the search interval to [Bn ,

1
2 (Bn + B)] and

carry out another iteration. Otherwise, shrink the search interval to [1
2 (Bn + B), B] and carry out another

iteration. Terminate the binary search when the width of the interval is less than δ · Bn - this occurs within
log2

(
n−1
δ

)
iterations. Define T+ to be the upper bound of the search interval after the final iteration and

T ∗ to be the smallest value of T such that LP(T) is feasible. Note that T ∗ ≤ OPT and T+ ≤ (1 + δ)T ∗, so
T+ ≤ (1 + δ)OPT as well.

A feasible solution to LP (T+) does not necessarily represent a valid schedule since the variables xij may
be fractional; that is, the LP may attempt to divide a job among several machines. To circumvent this
issue, we make use of a rounding theorem due to Lenstra, Shmoys and Tardos. I state it without proof - the
proof may be found in “Approximation Algorithms for Scheduling Unrelated Parallel Machines” by Lenstra,
Shmoys and Tardos or in standard textbooks on approximation algorithms such as Vazirani’s book.

Theorem 2: Define Ji(ε) = {j : cij ≤ ε} and Mj(ε) = {i : cij ≤ ε}. If the following LP has a feasible
solution: ∑

i∈Mj(ε)

xij = 1 ∀j ∈ [n]

∑
j∈Ji(ε)

xijcij ≤ αi ∀i ∈ [m]

xij ≥ 0 ∀j ∈ Ji(ε), i ∈ [m]

then any extreme point solution of the LP can be rounded to a feasible solution of the following IP in
polynomial time: ∑

i∈Mj(ε)

xij = 1 ∀j ∈ [n]

∑
j∈Ji(ε)

xijcij ≤ αi + ε ∀i ∈ [m]

xij ∈ {0, 1} ∀j ∈ Ji(ε), i ∈ [m]

Let αi = T+−di and note that Ji(ε) = S for all machines i and Mj(ε) = [m] for all jobs j ∈ S. Theorem
2 then states that a feasible solution to LP(T+) may be rounded in polynomial time to a feasible solution
to the following IP:

m∑
i=1

xij = 1 ∀j ∈ S

∑
j∈S

xijcij ≤ T+ − di + ε ∀i ∈ [m]

xij ∈ {0, 1} ∀i ∈ [m], j ∈ S

But a feasible solution to this IP combined with the assignment of big jobs used in the optimal schedule
corresponds to a schedule for all jobs with makespan at most T+ + ε ≤ (1 + δ)OPT + ε. It’s easy to see that
this algorithm runs in polynomial time, so we have proven Theorem 1 by demonstrating an algorithm that
runs in polynomial time and computes a schedule of makespan at most (1 + δ)OPT + ε.

4

